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Abstract: In this paper we first highlight applications of Hamming distance in
allied areas and further keeping applications of Hamming distance in mind we
introduce the notion of Generalized Hamming graph which is generalization of the
notion of Hamming graph in sense of Hamming distances. Besides this, we have
studied the concept of labeling in the realm of embedding of arbitrary graph into
generalized Hamming graph. Several new problems for further research are also
indicated.
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1. Introduction
Throughout the paper the considered graph are simple. We assume that the

reader is familiar with basic notions of graph theory which can be found in any
standard text books for notations no longer especially noted or described here we
refer the reader to the textbook [6]. Similarly, we assume familiarity with the basic
concepts of linear algebra but perhaps not as much as graph theory. This work is
basically relay on the blending of both above mentioned area’s.
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In this work, we use the set S := Zd
2 = Z2 × Z2 × · · · × Z2︸ ︷︷ ︸

d−times

= {(x1, x2, x3, . . . , xd) :

x1, x2, . . . , xd ∈ Z2}. For the q-tuple {(x1, x2, x3, . . . , xq) : x1, x2, . . . , xq ∈ Z2}
the elements of standard basis are denoted by ei, 1 ≤ i ≤ q and defined as
e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), and eq = (0, 0, . . . , 1). The zero vector
is denoted by e0 and is defined as e0 = (0, 0, 0, . . . , 0).

The credit of original work in direction of coding theory goes to Richard W.
Hamming [5] and the Hamming scheme became popular after this. According to
Hamming scheme, the elements are vectors of length d on some alphabet of size q.
To moving step forward, it is necessary to recall the following terminology:

Definition 1.1. Let x ∈ Zn
2 . Then the weight of vector x is denoted by wt(x), and

is given by wt(x) = d(x, 0) (i.e., the distance of x from the zero vector).
Equivalently, the number of 1’s in the string x = x1x2 . . . xn is known as the

weight of x. The weight may be thought of as the magnitude of the vector.

Example 1.2. Let us take two vectors x = (11101) and y = (10110). Then in
view of Definition 1.1, wt(x) = 4 and wt(y) = 3.

Remark 1.3. It may be notice that two vectors of different length can have the
same weight; as for instance wt(100100) = 2 and wt(101) = 2.

Let x and y be two elements of Zd
2, where x = x1x2 . . . xd and y = y1y2 . . . yd.

Then the sum x + y is calculated by adding the corresponding tuples of x and y
under addition modulo 2.

Definition 1.4. [5] Let x = x1x2 . . . xm and y = y1y2 . . . ym be two strings of length
m. The Hamming distance denoted by Hd(x, y) between the strings x and y is the
number of i’s such that xi ̸= yi, 1 ≤ i ≤ m. Thus Hd(x, y) = the number of places
at which x and y differ = wt(x+ y).

Thus, the Hamming distance between two vectors is the number of bits we must
change in one vector to get the other vector. The following example illustrate the
concept of Hamming distance:

Example 1.5. Let x = (1110) and y = (1011). Then x + y = (0101) and
Hd(x, y) = 2 = wt(x+ y).

Remark 1.6. Let B be the set of standard basis of q-tuples. Then, immediately it
can be noticed that any two distinct elements in B differ with exactly two coordi-
nates. In other words, if u and v, u ̸= v both belongs to B, then Hd(u, v) = 2.

It is worthwhile to note here that there does not exist three vectors in Zd
2

mutually possessing Hamming distance 1. Now we focus our attention to Hamming
graph which revolves around the Hamming distance.
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Definition 1.7. [5] Let S be a set of q elements and d be a positive integer. The
Hamming graph denoted by H(d, q) has vertex set Sd, the set of ordered d-tuples of
elements of S and two vertices u and v are adjacent if Hd(u, v) = 1.

Example 1.8. For d = 1, the Hamming graph H(1, q) is isomorphic to complete
graphKq. On the other hand, if q = 1, thenH(d, 1) is singleton graphK1. However,
the role of d is much more important as if d = 2, then H(2, q) is isomorphic to q×q
grid.

Hamming graphs represent a family of graphs that has arisen from coding the-
ory. There has been an extensive literature on Hamming graphs, for more details
see [3, 4, 7, 8, 10].

Several applications, such as pattern recognition, multi-media and intelligent
processing, require considerable memory access and data processing time. To tackle
such problems, digital associative memories based on Hamming distance is required
that involve the computation of Hamming weights or Hamming distance. Keeping
these issues in mind several authors established many application of Hamming
distance in the various field of interest some of them are as follows: making use
of Hamming distance for determining the document similarity Jarrous and Pinkas
established protocols in [2]. Kambs et al. [9] computed the Hamming distance d
between DNA oligonucleotides using some experiments. Motivated by large-scale
multimedia applications Norouzi et al. [11] derived a framework for Hamming
distance metric learning, which basically includes use of specified mapping from
the input space onto binary codes and it accommodates different classes of hash
functions.

Due to vast literature on the concept of Hamming distance, it is not possible
to mention all the applications here. In fact labeling technique is one of them, so
now we restrict our attention on embedding problem through labeling. Therefore,
in this paper an attempt have been made to establish the application of Hamming
distance in labeling. The main motivation behind to introduce the notion of Gen-
eralized Hamming graph is to establish a connection between Hamming distance
and labeling. To do this first we introduce the notion of Generalized Hamming
graph and later we have shown that every graph can be embedded into General-
ized Hamming graph. Several new results related to embedding of graph have also
been obtained.

2. Generalized Hamming Graph

In this section we introduce new notion of graph, viz., Generalized Hamming
graph denoted by Hk(d, q), which is just an extension of notion of Hamming graph
in sense of Hamming distances. The formal definition is as follows:
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Definition 2.1. Let S be a finite set with q elements and k, d (k ≤ d) be two
positive integers. Let Sd denotes the set of ordered d-tuples of elements of S. The
Generalized Hamming Graph denoted by Hk(d, q) has vertex set Sd and any two
vertices are adjacent if and only if they differ precisely in k-coordinates.

Consequently, if k = 1, then Hk(d, q) is isomorphic to the standard Hamming
graph H(d, q). The following examples depict the structure of Hk(d, q) for different
values of k, d and q.

Example 2.2. If k = d = 1, then the Hamming graph H1(1, q) is isomorphic to
complete graph Kq. On the other hand, if q = 1 with k = 1, then H1(d, 1) is
singleton graph K1.

Example 2.3. If k = 1 and d = 2, then H1(2, q) is q × q grid and if k = 2 and
d = 2, then H2(2, q) is 2-copies of K2. Further if we take q = 2, k = 1 and d = 3,
then H1(3, 2) is isomorphic to hypercube Q3. However if q = 2, k = 2 and d = 3,
then the Hamming graph H2(3, 2) is disconnected and is isomorphic to 2-copies of
K4. Furthermore if q = 2, k = 3 and d = 3, then the Hamming graph H3(3, 2) is
disconnected and is isomorphic to 4-copies of K2.

Since we are interested in Hamming graph over Fq := Z2, so here onwards we
shall calculate each parameter with respect to q = 2. The following result provides
the formula for the total number of edges in Hk(d, 2).

Theorem 2.4. The number of edges in Hk(d, 2) is given by
(
d
k

)
qd

2
.

Proof. Consider the Generalized Hamming graph Hk(d, 2). Clearly there are 2d

vertices and they themselves are d-tuples. Let u, v ∈ Zd
2 be two vertices of Hk(d, 2),

then u and v are adjacent if and only if Hk(u, v) = k. Let u = (u1, u2, . . . , ud) and
v = (v1, v2, . . . , vd), where ui, vi ∈ Z2 for all 1 ≤ i ≤ d. One may observe that u
and v can differ at k places if and only if ui is not equal to vi precisely at k places.
Thus in order to differ the vertex u with v at k tuples among d tuples there are

(
d
k

)
choices. This implies that each vertex in Hk(d, 2) is adjacent to

(
d
k

)
vertices. Thus

by degree theorem [6, Theorem 2.1, p. 141], one found that the number of edges
in Hk(d, 2) is given by 2d−1 ×d Ck.

Invoking the Theorem 2.4 the following result is straight forward.

Theorem 2.5. The Generalized Hamming graph Hk(d, 2) is
(
d
k

)
-regular.

In view of Example 2.3 it is worthwhile to note that the Generalized Hamming
Graph Hk(d, q) need not be connected.

Remark 2.6. It is also interesting to know that the structure of Hk(d, q) vary
according to the different values of k, k ≤ d. As if we take k = 1, then H1(d, q) is
connected, however if k increases and very close to d, then it does not happen so.
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This indicates that k and d are mutually dependent. In fact for k = d or k = d−1,
Hk(d, q) is disconnected.

Motivated from the study of existing literature on Hamming graphs and appli-
cations of Hamming distance, Acharya and Pranjali [1] introduced the concept of
Hamming distance k-labeling of graphs. The point of view of their paper, how-
ever, was mainly concern to labeling. With this context, in this paper we extend
a systematic study of Generalized Hamming graph and affix it with the concept of
Hamming distance k-labeling of graphs. Viewed in this way, the Generalized Ham-
ming graph turns out to be a maximal graph with respect to an injective Hamming
distance k-labeling of any of its spanning subgraphs. We also initiate a study of
optimal injective Hamming distance k-labeling of a given graph and further we
have identified certain conditions which guarantee a graph to be embedded into
standard hamming graph H1(d, q).

The formal definition defined in [1] is as follows:

Definition 2.7. [1] Let G := (V,E) be a graph with vertex set V := V (G) and
edge set E := E(G). Let Hd denotes the Hamming distance of G. A one-one
function f : V → Zm

2 is called the Hamming distance k-labeling of G if for each
(u, v) ∈ E(G), Hd(f(u), f(v)) = k.

Example 2.8. Consider Q3 and take S = Z2 × Z2 × Z2 × Z2. The Hamming
distance 1-labeling of Q3 is shown in Figure 1.

(0000)
 (1000)


(0100)
 (1100)


(0010)
 (1010)


(0110)
 (1110)


Figure 1: Hamming distance 1-labeling of Q3

Example 2.9. Consider K4, to label the vertices of graph take a set S = Z2 ×
Z2 × Z2. The Hamming distance 2-labeling of K4 is shown in Figure 2.
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(111)
 (010)


(100)
 (001)


Figure 2: Hamming distance 2-labeling of K4

Indeed it is obvious to recover the following basic facts about Hamming distance
k-labeling defined as above.

Remark 2.10. Let G be graph and H be a subgraph of G. If f is a Hamming
distance k-labeling of a graph G, then f is a Hamming distance k-labeling of H as
well.

Remark 2.11. If f : V (G) → Zm
2 is Hamming distance k− labeling of a graph

G, then f is Hamming distance k-labeling of each supergraph G′ of G, which is
obtained by adding edges that join pairs of distinct points x, y that had been now no
longer joined in G and having the property that Hd(f(x), f(y)) = k. Hence, such
a maximal supergraph M f

H so obtained is an induced subgraph of the Generalized
Hamming graph of Zm

2 . Further, if f is surjective, then M f
H = Hk(d, 2).

It is evident from [1] the every graph does not admit the Hamming distance
k-labeling for all k.

3. Main Results
This section is devoted to study of embedding of arbitrary graph into General-

ized Hamming graph Hk(d, 2).

Theorem 3.1. Every finite graph of order n can be embedded into H2(n, 2).
Proof. In order to prove the desired result, it suffices to show that complete
graph admits the Hamming distance 2-labeling. To do this, define a function
f : V (Kn) → Zn

2 such that

f(vi) = ei, 1 ≤ i ≤ n,

where ei are the standard basis with n-tuples. Clearly, f is injective and in view
of Remark 1.6, it is easy to find that for each pair of vertices (u, v) ∈ E(Kn),
Hd(f(u), f(v)) = Hd(ei, ej) = 2. This indicates that for each pair of adjacent ver-
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tices the Hamming distance between vertex labels is 2. Thus, Kn can be obtained
as a subgraph of H2(n, 2) and hence it can be embedded into H2(n, 2).

One can digging out the depth of above result that mentioned f of the kind
specified above nevertheless has a universality include in the fact that incidences
of the vertices to the edges in the given graph G does not have impact at all, in
the sense that only requirement is that G is a subgraph of H2(d, 2). This insists us
to define ‘optimal’ Hamming distance-2 labeling of a graph.

Definition 3.2. Let G be a finite graph of order n. The Hamming index of G,
denoted by HΘ(G), is the least positive integer h such that there is a set with
2d elements with respect to which G admits a Hamming distance-2 labeling. The
Hamming distance-2 labeling f of G is optimal if it uses the vertex labels of vector
space Zd

2.

Thus it can easily be observed that Hamming distance-2 labeling of G is just
an embedding of G into H2(d, 2) and HΘ(G), is the order of the smallest such
Generalized Hamming-2 graph. Therefore, towards finding HΘ(G) we need to pay
attention to find smallest d for which G can be embedded into H2(d, 2).

Invoking Theorem 3.1 along with Definition 3.2, it follows that for a finite graph
G of order n, n ≥ 2,

2d1 ≤ HΘ(G) ≤ 2n, (1)

where d1 denotes the ceiling of log2 n.

The bounds in (1) immediately allows us to raise the following open problem:

Problem 3.1. Characterize graphs for which the bounds in equation (1) are at-
tained. Also, find the positive integer d1 which provides optimal Hamming distance-
2 labeling for these graphs.

The concept of optimal Hamming index have been illustrated by the following
example:

Example 3.3. Let us consider cycle C4. Then by labeling technique it is found
that it can be embedded into each of H2(6, 2) H2(4, 2), and H2(3, 2) but not in
H2(2, 2). Therefore, the smallest order of Generalized Hamming graph is 8 and
precisely the graph is H2(3, 2). Hence the optimal Hamming index HΘ(C4) is 8.

Towards looking the bounds in equation (1) it can also be ascertain that for
cycle C4, the upper bound is 16 though HΘ(C4) is 8. This indicates the presence of
such graphs for which bounds are not sharp, so one can put attention to determine
such structures.
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The next result is quiet interesting and strengthened in sense of embedding of
G in Hk(d, 2) for each even k; which a more general form of above stated result.

Theorem 3.4. Every finite graph of order n can be embedded into Hk(
k
2
n, 2), for

each even k.
Proof. In the light of Theorem 3.1, we know that every graph admits the Hamming
distance 2-labeling, the proof can be completed by using the method of extending
the coordinates, but the technique is little bit different. We shall increase the length
of each string by taking some copies of the original string. Suppose we extend the
length of string by taking only one copy, then the original vertex label f(vi) ∈ Zn

2

becomes the new label f ′(vi) ∈ Z2n
2 , that is f(vi) = (1, 0, 0, . . . , 0) of length n has

converted into the string f
′
(vi) = (1, 0, 0, . . . , 0, 1, 0, 0, . . . , 0) of length 2n. In this

way, the weight always increased with magnitude 2. Thus,

wt(f
′
(vi) + f

′
(vj)) = wt(f(vi) + f(vj)) + 2

⇒ Hd(f
′
(vi), f

′
(vj)) = Hd(f(vi), f(vj)) + 2

= 4,

Proceeding in the similar vein by taking some copies of string f
′
and get the

functions f
′′
, f

′′′
, . . ., f

′′′′(k1−1)−times in such a way that every time the weight of
the sum of vertex labels is increased with magnitude 2 from the previous one. Thus,
for the functions f

′′
, f

′′′
, . . ., f

′′′′(k1−1)−times we have

wt(f
′′′′(k1−1)−times(vi) + f

′′′′(k1−1)−times(vj)) = wt(f(vi) + f(vj)) +

k1−1∑
1

2

= 2 + 2(k1 − 1)

⇒ Hd(f
′′′′(k1−1)−times(vi), f

′′′′(k1−1)−times(vj)) = 2k1

which is even. Therefore at each stage there exist a function by which we found that
G can be embedded into each of H2(n, 2), and H4(2n, 2), H6(3n, 2), . . . , Hk(

k
2
n, 2),

k is even. Hence for each even k, finite graph G can be embedded into Hk(
k
2
n, 2).

Now the above result opens new horizon of embedding of G into Hk(
k
2
n, 2), for

each even k. There is a curious fact about even Hamming distance, which is worth
mentioning. Thus the Generalized Hamming graph Hk(d, 2) in which Hd is even
for each pair of adjacent vertices deserves more attention. Furthermore, the above
defined optimal Hamming index is canonical in the sense that we can introduce
the number of optimal indices depending upon the embedding of G into Hk(

k
2
n, 2)

with specified k. Thus we can now define the Hamming index more precisely as
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follows:

Definition 3.5. Let G be a finite graph of order n and k be even positive integer.
The Hamming k-index of G, denoted by HΘ

k (G), is the least positive integer h
such that there is a set consisting of 2d elements with respect to which G admits a
Hamming distance-k labeling. The Hamming distance k-labeling f of G is optimal
if it uses the vertex labels of vector space Zd

2.
From the proof of Theorem 3.4 it can easily be pointed out that if G is a graph of

order n, then HΘ
2 (G) ≤ 2n, HΘ

4 (G) ≤ 22n, HΘ
6 (G) ≤ 23n, and so on HΘ

k (G) ≤ 2
k
2
n,

where k is even.
In contrast of Theorem 3.4 along with equation (1), the more precise form of

bound of HΘ
k (G) for a finite graph G of order n ≥ 2, is as follows:

2d1 ≤ HΘ
k (G) ≤ 2

k
2
n, (2)

where d1 is the ceiling of log2 n.
Furthermore, the above bounds in equation (2) can raises the similar open

problem as Problem 3.1, so one may attempt to tackle this more general problem.
Besides this, it is also of interest to know the conditions on k which guarantee finite
graph G can be properly embedded into Hk(d, 2) as they lead to very interesting
interplay between optimal indices, namely, HΘ

2 (G), HΘ
4 (G), . . . , HΘ

k (G), and brings
out some interesting combinatorial properties of Generalized Hamming graph.

Turning to the standard Hamming graph, i.e., H1(d, 2). it is natural to have a
curiosity to know, whether every graph can be embedded into Hamming graph? A
quick answer is No! as for the instance; consider complete graph K3, then there
does not exist function f : V (K3) → Zn

2 such that it can be embedded into H1(d, 2).
In fact the following problem raised in [1] is still open:

Problem 3.2. Characterize the graphs which admit the Hamming distance 1-
labeling?

Though the above problem was solved partially in [1] for some well-known
graphs. one may summarize the results as follows:

Theorem 3.6. [1] The following graphs can be embedded into H1(d, 2).

� Cycle graph Cn, for even n,

� Every star graph K1,n,

� Complete graph K2,

� Every hypercube Qn.
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The following result derived in [1], provides the necessary condition for a graph
to be embedded into H1(d, 2).

Lemma 3.7. If a finite graph G has an odd cycle, then it can not be embedded
into H1(d, 2).

At this stage, It is not difficult to see from the above lemma that bipartite-ness
of a graph is the necessary condition to be embedded into H1(d, 2). This raises the
following fundamental question:

Problem 3.3. Characterize the bipartite graphs which can be embedded into
H1(d, 2).

Although it is clear from the above discussion that every graph can be embed-
ded into H2(d, 2). But, there is still inquisitive to know what we can say about
embedding of G into Hk(d, 2), where k is odd and (k ≥ 3). In this regard, we have
established the following theorem.

Theorem 3.8. Let G be a graph embedded into H1(d, 2). Then it can also be
embedded into Hk(d, 2) (k > 1).
Proof. We will show the desired result, with the help of the method of extending
the length of string. Consider the finite graph G which can be embedded into
H1(d, 2) this indicates the existence of a function f : V (G) → Zm

2 such that for
each (vi, vj) ∈ E(G), Hd(f(vi), f(vj)) = 1, where f(vi) and f(vj) are the strings
of length of m. Now we shall extend the length of each string by one coordinate
putting either 0 or 1 at (m+1)th place, by which the new vertex label becomes the
string of length m+ 1 say f ′(vi) ∈ Zm+1

2 with the condition that for each adjacent
pair (vi, vj) ∈ E(G), f

′
(vi) = (, , , . . . , 0) and f

′
(vj) = (, , , . . . , 1). Now it can easily

be seen that the new function f
′
: V (G) → Zm+1

2 is injective and the weight of
f

′
(vi) + f ′(vj) is increased with magnitude 1, that is,

wt(f
′
(vi) + f

′
(vj)) = wt(f(vi) + f(vj)) + 1

⇒ Hd(f
′
(vi), f

′
(vj)) = Hd(f(vi), f(vj)) + 1

= 2,

which shows that G admits the Hamming distance 2-labeling.
Repeating the above procedure to add as one extra bits (either 0 or 1), we get
a sequence of functions f

′′
, f

′′′
, . . ., f

′′′′(k−1)−times in which every time the weight
of the sum of vertex labels is increased with magnitude 1 from the previous one.
Thus, for the functions f

′′
, f

′′′
, . . ., f

′′′′(k−1)−times we have
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wt(f
′′′′(k−1)−times(vi) + f

′′′′(k−1)−times(vj)) = wt(f(vi) + f(vj)) +
k−1∑
1

1

= 1 + (k − 1)

⇒ Hd(f
′′′′(k−1)−times(vi), f

′′′′(k−1)−times(vj)) = k,

Therefore for each k, (k > 1) the graph G admits the Hamming distance k-labeling.
Hence G can also be embedded into each of Hk(d, 2).

From the rigorous analysis, one can interestingly notice that if a graph G is
embedded into H1(d, 2), then it is also embedded into Hk(d, 2) (k > 1), i.e., em-
bedding of G into H1(d, 2), implies embedding of G into Hk(d, 2). In other words
if G is subgraph of H1(d, 2), then it is a subgraph of each of Hk(d, 2).

Acknowledgement
The author is thankful to Professor Mukti Acharya (Christ University) for her

valuable suggestion.

References

[1] Acharya, M. and Pranjali, Hamming distance k-labeling of graphs, Indian J.
Discrete Math., 2 (1) (2016), 51-58.

[2] Ayman, J. and Benny, P., Secure computation of functionalities based on
Hamming distance and its application to computing document similarity,
International Journal of Applied Cryptography, 3 (2013), 21-46.

[3] Bang, S., Van Dam, E. R. and Koolen, J. H., Spectral characterization of the
Hamming graphs, Linear Algebra Appl., 429 (2008), 2678-2686.

[4] Chepoi, V., d-connectivity and isometric subgraphs of Hamming graphs, Cy-
bernetics, 1 (1988), 6-9.

[5] Hamming, R. W., Error detecting and error correcting codes, The Bell System
Technical Journal, 29 (2) (1950), 147-160.

[6] Harary, F., Graph Theory, Addison-Wesley Publ. Comp., Reading, MA.
1969.
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